
Contents
Introduction to the Word Services suite / 2

Overview of the Word Services suite / 2
Applications that support the Word Services suite / 2
Typical client applications for the Word Services suite / 3
Relationship of the Word Services suite to the Core suite / 3

Usage scenarios / 4
Required support for a Word Services client / 5
Batch checking / 6

Predatory server-interface batch checking / 6
Server-interface batch checking / 7
Client-interface batch checking / 8

Interactive checking / 9
Server-interface interactive checking / 9
Client-interface interactive checking / 10

Communicating with the speller / 11
Enhancement options / 16
Menu support / 16
Highlighting / 18
Text locking / 19
Levels of support for the Word Services suite / 20
Making sub-object specifiers / 20
Error handling / 21
Related implementation details / 21
Range specifiers / 21
Other facilities / 23
Spell-check a single word / 23

Apple events defined / 24
Batch Process My Text / 25
Check Word—spell-check a single word / 28
Interactively Process Text—start an interactive spelling session / 31
Query Replace—replace text upon user confirmation / 32
Object classes defined in the Word Services suite / 34
cApplication—a standard Macintosh application / 36
cChar—text characters / 38
Primitive object classes defined in the Word Services suite / 43
Key forms defined in the Word Services suite / 44
Constants defined in the Word Services suite / 45

1 Apple Event Registry: Standard Suites

Figures and Tables

Figure 1 A suggested layout for the menu / X
Figure 2 A simple menu/ X
Figure 3 Programmer Options from Writeswell Jr./ X
Figure 4 A suggested layout for the menu / X
Figure 5 Ranges with offset relative to the end of

the container / X
Figure 6 Text block that is a range within an

enclosing text block / X
Table 1 Apple events defined in the Word Services suite / 24
Table 2 Apple event object classes defined in the

Word Services suite / 34
Figure 4 Object inheritance hierarchy for the

Word Services suite / 35
Table 3 Primitive object classes defined in the

Word Services suite / 43
Table 4 Key forms defined in the Word Services suite / 44
Table 5 Constants defined in the Word Services suite / 45

2 Apple Event Registry: Standard Suites

The Word Services suite

The Word Services suite contains definitions of Apple event constructs
that are used in operations involving spell-checking and grammar-
checking. The suite can be used for any service that must examine and
change the text in a document. The suite should be supported by
applications that let the user edit text, such as word processors,
drawing programs, spreadsheets, or electronic mail packages. The suite
should also be supported by applications that perform spell-checking,
grammar-checking, bibliography, envelope addressing or hyphenation
tasks.

3 Apple Event Registry: Standard Suites

Introduction to the Word Services suite

The Word Services suite defines Apple event constructs that allow an application to
have its text inspected and modified by programs that operate on text, such as spellers
or grammar checkers. The Word Services suite is based on the Core suite and contains
Apple event constructs that are not included in the Core suite.

Word processor in this document means any application that allows text editing, not
just programs sold as word processors. The term client is used interchangeably with
word processor.

Speller here refers to spelling and grammar checkers, or any other program that acts
as a server in this protocol. The term server is used interchangeably with speller.

Word Services is intended to be simple for client programs to implement. A client
developer may choose to leave out optional features of the suite to save work. The
burden of supporting the suite falls on the server developer. This is of great benefit to
the developer community as it is expected that there will be far more client
applications than server applications.

The termsmay or can are used to indicate that a feature is optional. For example, "A
client may support background highlighting." The term must is used to indicate a
mandatory feature: "If the speller receives an error code in response to setting the
background highlighting, it must display the questioned text within its own window."
There is much more flexibility allowed to client applications than to servers.

Overview of the Word Services suite

The Word Services suite defines Apple events for
■ applying a word service to one or more blocks of text
■ Registering the location, menu item, and icon of the server application
■ replacing text upon user confirmation
■ spell-checking a single word
■ starting an interactive spelling session
■ sending text to a server for interactive checking

The Word Services suite extends definitions of the three object classes—cApplication,
cChar, and cText—that are defined in the Core suite.

4 Apple Event Registry: Standard Suites

Applications that support the Word Services suite

The following types of applications support the Word Services suite as servers:
■ spellers
■ grammar checkers
■ hyphenators
■ envelope addressers
■ natural language translators
■ indexers
■ bibliography generators

Typical client applications for the Word Services suite

The following types of applications are clients of applications that support the Word
Services suite:
■ word processors
■ page layout applications
■ database applications
■ spreadsheets
■ electronic mail applications
■ graphic applications that allow text entry
■ personal information management applications

Relationship of the Word Services suite to the Core suite

The Word Services suite is designed to be easy for a word processor to implement. To support
the protocol, the word processor must support a small subset of the Core suite, particularly the
Get Data and Set Data events, the formRange key form, and the formAbsolutePosition key form,
including positions relative to the end of the container.

5 Apple Event Registry: Standard Suites

Sample source code

The sample source code displayed here is from the Word Services Software
Development Kit. The SDK contains the complete source code to a simple word
processor called Writeswell Jr.™, as well as a debugging version of a speller, a
dictionary, a tutorial on the sample code and this document. The code is written in
ThinkC, but should be readily portable to MPW or other C compilers.

The Word Services SDK is available on many online services.

6 Apple Event Registry: Standard Suites

Usage scenarios

There are four basic scenarios for using the Word Services suite: server-interface
interactive, server-interface batch, client-interface interactive, and client-interface
batch. Each mode of operation has its own advantages. In server-interface interactive
mode, the user interface is provided by the server and the client does not have to
create one. The server-interface batch provides simple control flow.

The client-interface interactive mode provides an integrated look of the user interface
and is designed for developers who want to create their own interface. The client-
interface batch is simple to implement. Applications can also use the Word Services
suite to spell-check a single word directly.

Each client or server may support one or more of the scenarios. It is not expected that
every application will provide for each kind of interaction.

There are two main styles of operation: server-interface and client-interface. In the
server-interface style of operation, the user interface is provided by the server.
Misspelled words are presented with a list of suggested spellings in a dialog box
drawn by the speller. The user indicates whether to skip or replace the misspelled
word within the dialog box. If the word processor supports it, the speller can request
that the misspelled word be highlighted in a window provided by the word processor,
thus displaying the word in its own style and in the context of the whole document. If
background highlighting is not supported, the speller displays the word in its own
window, possibly with some simple formatting.

In the client-interface style of operation, the speller acts as a background server. The
word processor sends text to the speller, which sends back a report that contains a list
of all the words that were misspelled. The word processor then draws its own dialog
box and requests the speller to provide a list of suggested alternatives.

Both server-interface and client-interface styles of operation have two modes of spell-
checking: batch or interactive. Batch mode spell-checks a range of text (typically
either the current selection or the whole document) upon an explicit user command.

In interactive mode, spell-checking is performed while the user types. The word
processor parses words and sends them to the speller. If the word is correct, the
speller does not respond. If the word is incorrect, an error signal is generated, such as
SysBeep. The user can either bring up a dialog box to do the replacement or ignore
the signal (either because the word is correct or because the word has already been
fixed or deleted).

7 Apple Event Registry: Standard Suites

Note that the interactive mode can be slow. The time it takes to generate an Apple
event, do a MultiFinder switch (switch to the speller), receive the event, look up the
word in the dictionary, and then switch back to the word processor might be
unacceptable to the user, especially if the text is sent one character at a time by the
application.

For this reason, interactive checking is normally done asynchronously; the word
processor sends the Apple event and continues without switching out. During the next
normal switch, the speller starts the word lookup, but allows itself to be switched back
out before it is done (if the lookup takes too long). There are several opportunities to
check each word, as each typed character returns from a separate WaitNextEvent call.

Applications employing either style of interactive operation must be able to deal with
typical cases, such as
■ the user typing text after a misspelling and before reacting to an error signal
■ the user typing an incorrect word while the speller identifies an earlier misspelling
■ the user moving the mouse and typing bits of words in different places
■ the user pressing the backspace key
■ the user clicking the mouse in the middle of a word and changing it

Required support for a Word Services client

The Word Services client must support at least a minimal set of Core suite Apple
events and object model types, although for other purposes it should support them all.
The Apple events a Word Services client must support are as follows:
■ Get Data
■ Get Data Size
■ Set Data

The key forms that a Word Services client must support are as follows:
■ formAbsolutePosition (including positions relative to the beginning of the container

and positions relative to the end of the container)
■ formPropertyID
■ formRelativePosition
■ formRange

The recommended but optional properties and element classes that the Word Services
client should support are as follows:

8 Apple Event Registry: Standard Suites

■ pBatchMenuString
■ pInteractiveMenuString
■ pLockTransactionID
■ cWord
■ cParagraph

Batch checking

This section discusses the following types of batch checking:
■ Predatory server-interface batch checking
■ Server-interface batch checking
■ Client-interface batch checking

Predatory server-interface batch checking

Predatory server-interface batch checking allows spell-checking of documents created
by word processors that do not support the Word Services protocol. As long as the
word processor supports the Core suite sufficiently, its documents are processed by
the Word Services server. This also allows a user to drag a document icon to the
speller in the Finder. The speller’s response to an 'odoc' event (Open Document event)
is to locate the creator and have it open the document.

To perform predatory server-interface batch checking, the user launches the speller
and then opens a word processor document from the file menu of the speller. The
speller launches the application that created the document and uses the Get Structure
event to locate the text fields within the document. The speller then sends a Get Data
event to retrieve the text, which can be a range of characters, a paragraph, or whole
text. The speller than sends the Set Data events to set a range of characters, when it
needs to replace them. The range specifier consists of two object specifiers, one for
the start and one for the end of the range.

For predatory checking to work, the speller explores the word processor’s object to
locate the text items. Locating text items is an easy task when performed in a simple
text editor window, but it is quite complicated when attempted in a highly structured
document.

9 Apple Event Registry: Standard Suites

Server-interface batch checking

To initiate server-interface batch checking, the user selects the text to be spell-
checked. This is done either by shift-clicking (clicking the mouse button while holding
down the shift key) several cells in a spreadsheet or text fields in a drawing,
highlighting a range of text in a word processor, or selecting the spell-checking menu
option from within the application.

For each text field to be checked, the word processor creates an object specifier. Note
that the object specifier refers to an object in the word processor’s own document and
that each object is equivalent to a cText object. (These objects must contain
paragraphs or characters. Also, if you do a Get Data on the object itself, all the text
within it is returned.)

To locate the speller for the first time, the word processor uses the PPCBrowser
function, which returns the information about the application (in this case, the speller)
that the user has selected in the target ID record. (For more information about the
PPCBrowser, see the Apple Event Manager chapter of “Inside Macintosh:
Interapplication Communication.”)

After locating the speller, the word processor uses the Get Data event to obtain
pBatchMenuString, pInteractiveMenuString, and pLocation properties from the
speller. The pLocation property is an alias record that contains the creator code of the
server, as well as its filesystem location. The word processor must save all these
properties in its own preference file or within its own resource file for future use. A
separate resource file is recommended, because it allows the user to save the
preferences whenever an application is upgraded, and also allows each user to have
their own set of preferences when an application is shared over the network. The next
time the user requests spell-checking, the word processor simply checks the alias
record to locate the speller.

Once the word processor has located the speller, it checks the creator code to see
whether the speller is already running. The word processor connects directly to the
speller if it is running. If the speller is not running, the word processor can use the
alias record to launch the speller (provided that the speller file already exists on the
machine). This can be done by sending the Open Selection event, with the alias record
as a parameter, to the Finder.

10 Apple Event Registry: Standard Suites

After establishing a connection with the speller, the word processor sends a Batch
Process My Text event to the speller. The keyDirectObject parameter to the event is
either a single object specifier or a list of several object specifiers (or possibly a
specifier that indicates it is the head of a list of object specifiers kept by the word
processor). Once the reply is received, the word processor resumes its normal event
processing. The particular service that is performed on the text depends on the server
to which the word processor connects to. The server can be a grammar checker, a
speller, or another program.

The key to easy implementation of the protocol is that the word processor need only
send one event, then forget about it and handle other events normally. The whole
operation involves an extended sequence of Apple events and replies, but the logic to
drive the process is entirely in the speller. The word processor need only respond
passively to the Apple events; there is no spell-checking mode that it must enter. Of
course, the word processor must support the necessary events, classes, and key forms
from the Core suite.

Client-interface batch checking

Client-interface batch checking is useful to word-processor developers who want to
present their own interface, and to server developers who want to write a server that
can be accessed from a remote machine.

To perform client-interface batch checking, the user selects text to be checked either
by shift-clicking several cells in a spreadsheet or text fields in a drawing, highlighting
a range of text in a word processor, or selecting the “Check Whole Document” option
from the menu. The user then selects a service, such as “Check Spelling,” from the
Services menu.

For each text field to check, the word processor creates an object specifier. Next, the
word processor retrieves the alias record to the selected service from its preference
file. Then, the word processor checks to see whether the speller is currently running;
if it is, the word processor sees its creator code in the list of PPC ports by using the
IPCListPorts function. If the speller is not running, the word processor launches the
speller from the saved location by using the Open Selection event from the Finder
Suite or by calling LaunchApplication directly if the application is on the same
machine.

11 Apple Event Registry: Standard Suites

The word processor sends the speller a Batch Process My Text event with the
keyDirectObject parameter consisting of either a single object specifier or a list of
several object specifiers. The keyFacelessMode parameter of the Batch event is of
typeBoolean with a TRUE value. After sending the event, the word processor waits for
the reply from the speller before resuming its normal event processing. On receiving
the Batch Process My Text event, the speller either sends errAEInTransaction as an
error code in reply if it is busy, or records the object specifiers and the address of the
sender, and then returns a reply indicating no error. (Refer to the section
“Communicating with the Speller” for details regarding interaction between the word
processor and the speller.)

Interactive checking

This section discusses the following types of interactive checking:
■ Server-interface interactive checking
■ Client-interface interactive checking

Server-interface interactive checking

To perform server-interface interactive checking, the user requests that interactive
checking be turned on (generally by selecting a menu option). A word processor can
have a preference setting that can automatically turn on interactive checking
whenever the word processor is launched.

The first time the user requests interactive checking, the word processor locates the
speller by using the PPCBrowser function, which returns the information about the
application (in this case the speller) that the user has selected in the target ID record.
(For more information about the PPCBrowser, see the Apple Event Manager chapter of
“Inside Macintosh: Interapplication Communication.”)

After locating the speller, the word processor uses the Get Data event to obtain
pBatchMenuString, pInteractiveMenuString, and pLocation properties from the
speller. The pLocation property is an alias record that contains the creator code of the
server, as well as its file system location. The word processor must save all these
properties in its own preference file or within its own resource file for future use. A
separate resource file is recommended, because it allows the user to save the
preferences whenever they upgrade the application, and also allows each user to have
their own set of preferences when an application is shared over the network. The next
time the user requests spell-checking, the word processor simply checks the alias
record to locate the speller.

12 Apple Event Registry: Standard Suites

Once the word processor has located the speller, it checks the creator code to see
whether the speller is already running. The word processor connects directly to the
speller if it is running. If the speller is not running, the word processor can use the
alias record to launch the speller (provided the speller file already exists on the
machine). This can be done by sending the Open Selection event, with the alias record
as a parameter, to the Finder.

After connecting with the speller, the word processor sends an Interactively Process
Text event to the speller and waits for a reply. If the reply is received without an error,
the word processor starts sending words to the speller. As the user finishes typing
each word, the word processor sends it to the speller in the Check Word Interactively
event. (Refer to the section “Communicating with the Speller” for details regarding
interaction between the word processor and the speller.)

Client-interface interactive checking

This scenario is similar to the server-interface interactive scenario, except that when
the user requests that a questioned error be looked up, the speller sends a Query
Replace to the word processor that provides the user the option to replace the text.

To perform client-interface interactive checking the user turns on interactive checking
by selecting the menu option. A word processor can also have a preference setting
that automatically turns on interactive checking whenever the word processor is
launched. When the word processor is launched the first time, it locates the speller by
using the PPCBrowser function. The word processor than uses the Get Data event to
obtain pBatchMenuString, pInteractiveMenuString, and pLocation properties from the
speller. The pLocation property is an alias record that contains the creator code of the
server, as well as its file system location. The word processor must save all these
properties in its own preference file or within its own resource file for future use. A
separate resource file is recommended, because it allows the user to save the
preferences whenever an application is upgraded, and also allows each user to have
their own set of preferences when an application is shared over the network. The next
time the user requests spell-checking, the word processor simply checks the alias
record to locate the speller.

13 Apple Event Registry: Standard Suites

The word processor checks the creator code to see whether the speller is running. It
connects directly to the speller if it is running, otherwise it uses the alias record to
launch the speller (provided the speller file already exists on the machine). To launch
the speller it sends the Open Selection event with the alias record as a parameter to
the Finder. After connecting with the speller, the word processor sends an
Interactively Process My Text event with the keyFacelessMode parameter as TRUE,
and waits for the reply. If the reply is received without an error, the word processor
starts sending each word to the speller (as the user finishes typing it) in a Check Word
Interactively event. Refer to the next section for details regarding interaction between
the word processor and the speller.

Communicating with the speller

To communicate with a speller, a word processor first locates the speller by checking
the creator code in an alias record to see whether the speller is running. If the speller
is running, the word processor connects directly to it. Otherwise, it communicates
with the speller by sending the Open Selection event (with the alias record as a
parameter) to the Finder. Once the word processor has connected to the speller, it
sends the appropriate Apple Event.

In the server-interface batch mode the word processor sends a Batch Process My Text
event. When the speller receives the event, it records the object specifiers and the
address of the sender, then returns a reply indicating that there is no error. If the
speller is busy, it sends errAEInTransaction as an error code in the reply. The word
processor receives the reply from the speller and resumes its normal event processing.

The speller then makes itself the foreground application by calling AEInteractWithUser and
by displaying a dialog box (or another type of user interface). Note that the dialog box must
be movable, allowing the user to view the text in the word processor’s window.

For each object specifier in the list of object specifiers sent by the word processor:
■ The speller uses a Set Data event on pLockTransactionID for the object to prevent

other Apple events from changing the text while the text is being worked on. All
subsequent events sent by the speller must have the transaction ID.

■ The speller makes new object specifiers from the original object specifier. The new
object specifiers pick out paragraphs or ranges of characters within the original
object specifier.

14 Apple Event Registry: Standard Suites

■ The speller sends a Get Data Size event to find the amount of text within the object.
Note that Apple Events cannot contain more than 64K of data - even though this
limit may change in the future, a particular speller might have a limited amount of
memory. Also, placing a parameter on an Apple Event causes two copies of the
data to exist temporarily - the parameter's descriptor, and the data within the event
itself.

■ The speller sends a Get Data event to retrieve the text. The speller can get the
whole text object, paragraphs within it, or ranges of characters.

■ The speller sends a Set Data event to set the pBackgroundHilite property of a
ranges of characters that it wishes the user to change.

■ If the word processor does not support background highlighting, it returns an error
code to the Set Data event. If the speller receives an error code, it creates a window
to display the text itself. Also, it should allow the user to select a preference of
whether the text is shown in the speller or the word processor window.

■ The speller sends Set Data events to set a range of characters when it needs to
replace them. The range specifier consists of two object specifiers for a single
character. Each character specifier uses formAbsolute position to give the offset
from the end of the container.

■ The speller uses a Set Data event on the pLockTransactionID property of the text
field, setting it to kAEAnyTransaction. This allows other events to access the object.

When the speller is done, it restores the word processor to the foreground of the screen and
quits.

In the client-interface batch mode, communication between the word processor and
the speller is similar to that in the server-interface batch mode. However, the speller
does not send events to highlight and replace the text directly. Instead, it sends “Query
Replace” events to the word processor that include an object specifier for the text in
question, a list of replacement strings, and a text string that explains what the error is.
After connecting with the speller, the word processor sends a Batch Process My Text
event. If the speller is busy, it returns a reply with errAEInTransaction as an error
code. Otherwise, the speller records the object specifiers and the address of the
sender, and then returns a reply indicating that there is no error. Upon receiving the
reply, the word processor resumes its normal event processing.

15 Apple Event Registry: Standard Suites

If the Batch Process My Text contains a single object specifier, the speller uses that
specifier as a container for a table of object specifiers that is kept in the word
processor. Each element of the table is an object specifier that refers to the actual text.
Using the table instead of sending the object specifiers directly allows a large number
of text blocks to be specified without exceeding the 64K byte limit on the data size that
can be sent through an Apple event.

The word processor then displays a dialog box (or some other user interface). The
dialog box should be movable to allow the user to view the text in the word processor's
window.

For each object specifier in the list of object specifiers sent by the word processor:
■ The speller uses a Set Data event on pLockTransactionID for the object. This is done

to prevent other Apple events from changing the text while it is being worked on.
■ The speller makes new object specifiers from the original object specifier. The new

object specifiers specify paragraphs or ranges of characters within the original
object specifier.

■ The speller sends a Get Data Size event to find the amount of text within the object.
(Note that Apple events cannot contain more than 64K of data, and a particular
speller might have a limited amount of memory.)

■ The speller sends a Get Data event to get the text. It can get the whole text object,
paragraphs within it, or ranges of characters.

■ If a range of characters must be changed, the speller sends a Query Replace event
to the word processor. The Query Replace event includes the keyAEData parameter
(a list of zero or more strings that can be used as possible replacements), and the
keyErrorString parameter (a message string that indicates the nature of the error).
The word processor displays the message and allows the user to either select one of
the suggested words, type in a replacement, or skip the error.

■ The speller then uses a Set Data event on the pLockTransactionID property of the
text field and sets it to kAEAnyTransaction so that other events can access the
objects.

When the speller is done, it once again makes the word processor the foreground
application.

16 Apple Event Registry: Standard Suites

In server-interface interactive checking, after connecting with the speller, the word
processor sends an Interactively Process Text event and then waits for reply. If the
speller is busy, it sends errAEInTransaction as an error code in the reply, otherwise it
returns a reply with no error. If the word processor receives a reply without an error, it
starts sending each word to the speller. As the user finishes typing each word, the
word processor sends it to the speller by the Check Word Interactively event. (In
general, typing a word break character, such as a space or punctuation mark, causes a
word to be sent).

Every separate word is sent, including any punctuation, because the speller might
have the ability to check capitalization after periods, or it might be a grammar checker
that can rigorously check punctuation.

Each word is sent asynchronously, with no reply requested. Because it can take some
time for the speller to check the word, waiting for replies causes long pauses. Not
using replies reduces overhead. If the speller reports a misspelled word, it does so on
its own with the Notification Manager.

Each event sent to the speller contains the following parameters:
■ keyAEDirectObject —a typeObjectSpecifier that specifies the word that is sent. It

must be of formAbsolutePosition relative to the beginning of the container, rather
than the end, as is used in batch checking, because the end of the container
changes as the user types.

■ keyAEData —the actual text of the word that is sent.

If the speller finds a spelling error, it should generate a beep (SysBeep) or blink the
menu bar to alert the user. The speller should use the Notification Manager to set an
icon blinking in the menu bar, because the user might choose to ignore the spelling
error (it might be a correct word that is not in the dictionary). The user can then select
the Check Word option from the word processor’s menu. The word processor must
send the Process Last Error event to the speller. If there is a selection, the Check Word
item is grayed out, so that the user is forced to choose the Check Spelling or Check
Grammar items. The word processor can optionally allow Check Word if a single word
is selected.

Upon receiving the Process Last Error event, the speller sends a Get Data event back
to the word processor to get the text of the erroneous word again. This recall
procedure is performed because something might have occurred to invalidate the
object specifier for the word (text might have been added before the word, or the user
might have deleted the word).

If the returned text does not match the text that was originally questioned, the speller
should generate an alert and return control to the word processor. If the text does
match, the speller should show its dialog box. If the user wants to replace a word, the
speller uses a Set Data event to perform the replacement.

17 Apple Event Registry: Standard Suites

A word processor can provide a menu option that, when selected by the user, allows
the speller to automatically replace words whenever it finds a spelling error without
consulting the user; it searches for the correct word and then uses the Set Data event
to do the replacement.

In client-interface interactive checking, after connecting with the speller, the word
processor sends the speller an Interactively Process Text event with the
keyFaceLessMode parameter as TRUE. Note that the TransactionID for the
Interactively Process My Text event should have a unique value, because the
TransactionID is used by subsequent Query Replace events. (Do not set the
kAENeverInteract flag in the event. The speller might need to interact, such as to
prompt a user to locate a dictionary file). On receiving the event, the speller records
the address of the sender and then returns a reply. The speller sends
errAEInTransaction as an error code to the word processor if it is busy, otherwise the
reply does not contain any error. If the word processor receives the reply without an
error, it starts sending words to the speller. As the user finishes typing each word, the
word processor sends it to the speller in the Check Word Interactively event. (In
general, typing a word break character, such as a space or punctuation mark, causes a
word to be sent.) Every separate word is sent, including any punctuation.

Each Check Word Interactively event sent to the speller contains the following
parameters:
■ keyAEDirectObject —a typeObjectSpecifier that specifies the word that is sent. It

must be of formAbsolutePosition relative to the beginning of the container, rather
than the end, as is used in batch checking, because the end of the container
changes as the user types.

■ keyAEData —the actual text of the word that is sent.

Each word is sent asynchronously, without requesting a reply from the speller. This is
done because the speller can take some time to check the word; thus, waiting for
replies results in pauses. If the speller finds a misspelled word, it should generate a
beep or blink the menu bar to alert the user, or use the Notification Manager to set an
icon blinking in the menu bar, because the user might ignore the word (it might be a
correct word that is not in the dictionary), or manually correct the word.

18 Apple Event Registry: Standard Suites

The user can then select the Check Word option from the word processor’s menu. The
word processor then sends a Process Last Error event to the speller. Upon receiving
the event, the speller sends a Get Data event back to the word processor to get the
text of the erroneous word again. This is important because something might have
occurred to invalidate the object specifier for the word (text might have been added
before the word, or the user might have deleted it). If the returned text does not match
the text that was originally questioned, the speller should show an alert, then return
control to the word processor. If there is a match, the speller sends a Query Replace
event to the word processor. The Query Replace event contains the object specifier for
the erroneous word, as well as any suggested replacements, and a text string that
explains what the error is. The word processor can then display a dialog box that
allows the user to edit the text.

A word processor can also provide the user with a menu option that, when selected,
allows the speller to automatically replace words whenever it finds a spelling error
without consulting the user.

Enhancement options

The Word Services Suite is very flexible. The word processor developer may provide
basic functionality with little labor, or the developer may choose to provide a richer
interface at the expense of a moderate amount of work.

This section discusses the following enhancement options:
■ Examples of menus
■ Installing a server
■ Handling menus
■ Checking a selection
■ Multiple languages
■ Highlighting
■ Text locking
■ Error handling
■ Read-Only documents

19 Apple Event Registry: Standard Suites

Examples of Menus

It is possible that a user might have a number of different servers on his or her
machine, each with a menu item for interactive and batch service mode (a particular
speller might not support both modes). For a richer interface, the word processor can
be programmed to request the pMenuIcon property to get a typeSmallIcon object that
it can use as a small icon for the menu items.

Figure 1 is a suggested layout for such a menu. In this example, new services are
appended to the end. (This is just a suggestion.) There are many alternative to using
this menu. For example, services can be selected from a scrolling list. Alternatively,
minimal support might be provided by going to the PPCBrowser every time checking is
requested.

■ Figure 1 A suggested layout for the menu

If the client does not support interactive checking, it can have a much simpler menu as
in Figure 2. The "Check Selection" item may be eliminated as well if the word
processor handles this automatically.

20 Apple Event Registry: Standard Suites

■ Figure 2 A simple menu

If the client program allows for completely customizable menus, there need not be a
separate Services menu at all. Instead, the "Get New Service" and "Remove Services"
items may be incorporated into the dialog that allows menu editing, and each service
may be placed on any menu that the user desires.

Installing a server

There are several ways on might initially locate a server. The user may launch the
server and then select it from the client using the PPCBrowser dialog.

Alternatively, the user may locate the server's application file using a Standard File
open dialog. The client program will then launch the speller.

These two methods have the disadvantage that there is no way to easily filter out non-
Word Services applications. A better way to locate the server might be to have the
user launch it, and then send a Get Data event to ask for the menu strings from each
application that is running. Non-servers will return an error code. Word Services
Servers will return at least one of the strings. The client must check whether the
server is already installed, and then add the server to its menu.

Handling menus

When a word processor locates a speller, it sends Get Data events to request the
pBatchMenuString, pInteractiveMenuString, and pLocation properties from the
speller.

The strings returned are added to the word processor’s menu. By doing so, the user
can have separate items for each service. The strings, aliases and icons are saved in
the preference file for future use.

21 Apple Event Registry: Standard Suites

Example code for handling the preferences is in the Word Services SDK. It should be
emphasized that this code is an example only - the developer may want to use a
different method.

The preference file contains a record that records the type of service for each menu
item—either batch service, interactive service, or no service. (If there is no service,
then this menu item is not in use).

typedef struct {
…
short serviceType[kMaxServices];

} WWJrPrefs, **WWJrPrefsHdl;

typedef enum {
kNoService = 0,
kBatchService,
kInteractiveService

} ServiceType;

When the menu is built, a global array is used that stores the resource ID for each
service menu item.

Because menu icons are specified by resource id within the menu item, rather than as
handles to blocks of memory, the preferences file must be the current resource file
when MenuSelect is called:

Boolean DoMouseDown(EventRecord *eventPtr)
{

WindowPtr theWindow;
Boolean result = true;
short curFile;
short deskPart;
…

deskPart = FindWindow(eventPtr->where, &theWindow);
switch(deskPart){

…
case inMenuBar:

FixMenuMarks();
curFile = CurResFile();

22 Apple Event Registry: Standard Suites

UseResFile(gPrefFileRefNum);
/* Make SICN resource accessible */
result = DoMenuCommand(

MenuSelect(eventPtr->where));
UseResFile(curFile);
FixMenuMarks();
break;

When a server creates an alias record to reply to the Get Data event for the pLocation
property, it must place its own creator code in the userType field of the alias record
(this field is not used by the alias manager, and may be used as desired by
applications). When the service is selected from the menu, the client gets the creator
code from the alias record. The client then uses the Process Manager to see if the
server is already running. (The FindAProcess function iterates through the processes
using GetNextProcess and GetProcessInfo.) If it is not, the word processor launches
the speller by sending the Open Selection event, with the alias record as a parameter,
to the Finder.

/* See if the speller is out there */
signature = (*aliasHdl)->userType;

if (!FindAProcess(signature, &psn, &pInfo,
(FSSpecPtr)NULL, (StringPtr)NULL)){

err = LaunchSpeller(aliasHdl);
if (err){

return err;
}

Checking a selection

Figure 1 shows a menu in which the user may choose between selecting the whole
document or checking a selection by toggling the check mark on the "Check Selection
Only" menu item. The Word Processor developer may choose instead to always check
a selection if a selection exists, so that the menu item is unnecessary, as in Figure 2.
(If there is no selection, the whole document should be checked).

The client program has complete control over which text is processed. It is up to the
client to prepare the list of object specifiers for the text. If the user wishes to check a
particular cell in a spreadsheet, then the spreadsheet will send an object specifier for
that cell to the server.

23 Apple Event Registry: Standard Suites

Multiple languages

Spellers already exist in the French, German, and Turkish languages.

Handling multiple languages in a document is quite a tricky problem. There is no
reliable way for a word processor to be sure that a user is writing in a particular
language. It is helpful to give the user some means to declare the language that a
range of text is in, but many client applications will not provide for this, and the user
might not care to go to the trouble of declaring the language when creating the
document. This problem exists with conventional OEM and document-based spell-
checkers. C'est la vie.

The server must be able to receive text that is in an unexpected language. This might
be as simple as reporting each word as misspelled and allowing the user to skip it. A
speller may be fancy enough to handle multiple languages and switch between them
as the language changes.

A simple client implementation may reply to Get Data events from the server with
blocks of text that are of typeChar. There is no way the speller can determine the
language in this case.

If the client allows the user to declare the language of the text, then replies to Get
Data events should be of typeIntlText. This data type includes the country and script
code along with the text. If the speller cannot understand the language then it should
ignore the text or display a helpful message.

In this case it is the client's responsibility to specify each block of a particular
language with a different object specifier. If a sentence is mostly English with a single
word of German in the middle, then there will be three object specifiers given in the
Batch event: one specifying the first part of the sentence, the second specifying the
single German word, and a third to specify the remainder of the sentence.

While servers such as spellers are very language dependent, some servers may not
care at all. For this reason, the client should request checking for all text blocks, and
leave it up to the server to decide whether it wishes to deal with them.

Highlighting

When a speller suggests that a word be replaced, it is helpful to highlight the word in
the original document so that the user may see the word in context with its original
font and style.

24 Apple Event Registry: Standard Suites

A word processor can optionally support background highlighting by handling the
pBackgroundHilite property of characters. If the property is true, then the character
is highlit even when its window is in the background. If the property is false, then the
character is not highlit when the window is in the background.

This property is analagous to the pFont and pStyle properties of characters - it may be
applied to a range of characters to highlight a range of text.

The speller sends Set Data events to set background highlighting of ranges of
characters to True or False. If the value is true, the specified characters are
highlighted just as they are when selected by the mouse. An implied side effect of
setting this property is that the highlit text is scrolled into view within the document
window.

The normal way to highlight text is to set the user’s selection just as if it had been
selected with the mouse. A flag should exist in the code that highlights the selected
text. In most applications, the updating code checks to see whether the window it
accesses is in the front and, if it is not, the updating code does not display the
selection.

If there are any characters with a pBackgroundHilite value of True, the selection is
displayed. That is, setting any range of characters to true will select the characters
and then set a global flag that causes the selection display code to still highlight while
in the background.

An ideal implementation uses a two-stage highlight, similar to the way the Macintosh
Programmer’s Workshop (a development environment for writing Macintosh software)
and MacApp (an object-oriented programming framework) do, with a dim outline while
in the background and a regular highlight while in the foreground.

Support for background highlighting is optional. If the word processor does not
support background highlighting, it returns an error code to the Set Data event. If the
speller receives an error code in response to setting the background highlighting, it
must display the questioned text within its own window.

If a client supports background highlighting, it may optionally also support the
highlighting of disjoint ranges. This is helpful to grammar checkers, that may want to
point out (for example) that two verbs disagree in tense by highlighting each of them.

25 Apple Event Registry: Standard Suites

If the client does not support disjoint ranges of highlighting, then a Set Data event that
requests that a character be highlighted that is not contiguous with the current highlit
range will unhighlight the original range. (This is the normal behavior of most word
processing engines such as TextEdit). If it does support disjoint highlighting, then the
original highlit range will remain. Thus it is the responsibility of the server request
old ranges be turned off before a new one is turned on.

If a client supports disjoint ranges, then the pCanDisjointHilite property of its
cApplication object is true. If it does not support them, then either its property is
false, or attempting to read the property will return an error.

Text locking

A word processor may optionally support text locking. The lock property exists to
make the Word Services suite more reliable. The lock property is not necessary as long
as the user does not allow more than one application to access the document at the
same time.

If a client supports text locking, a word processor must first resolve any object
specifier that refers to a cText object, or a property or element of a cText object. Then
the client checks whether a lock owner exists for the cText object.

The pLockTransactionID property holds the transaction ID for a transaction that has
exclusive access to the cText object. The pLockTransactionID property has the value
kAnyTransactionID if there is no lock owner. If a lock owner exists, the word processor
should extract the transaction ID from the Apple event that is attempting to operate on
the cText object. If the transaction ID does not match, the word processor should
return errAEInTransaction rather than performing the requested action.

An implication of the pLockTransactionID property is that if its value is not
kAnyTransactionID, the property cannot be set by an event whose transaction ID
matches does not match its value.

A word processor might implement the pLockTransactionID property by keeping a list
of locks, with the contents of the list being the transaction IDs and pointers to the
cText objects. Because there are a few (usually zero or one) locks in existence, this
method is easier than adding a transaction ID field to the data structure that
implements the cText objects.

26 Apple Event Registry: Standard Suites

A speller must still operate on a word processor that does not support text locking.
The speller can try to get data from the pLockTransactionID property. If an error is
returned to the read, the pLockTransactionID property is not implemented and the
speller goes on as if it had received the lock.

It is difficult to determine the value to use for the transaction ID. Begin Transaction
cannot be used, because it locks out all other transactions. The speller can make up a
value, but there is a risk that the value is not unique. A reasonable convention is for
the speller to use the value of ticks at the time it sends the event to set the property as
the transaction ID. The probability of two different applications sending the Set Data
events at the same time is low.

Error handling

The Batch Process My Text event is a "Fire and Forget" technique. The client (a word
processor of any sort) sends a single Batch Process My Text event and then continues its
event loop, only responding to the Core events initiated by the server (spelling- or
grammar-checker), which directs the rest of the process.

A client-interface batch mode spell-checking session initiated by a Fire and Forget method
allows easy handling of error conditions. If the speller cannot continue, it should stop
sending events to the word processor. If the word processor encounters an error, it should
return error replies to the speller, which should then stop spell-checking. The worst
possibility that can happen under these circumstances is that a range of text might stay
locked.

In any case, the speller should stop its work if it receives an error reply from the word
processor, unless the error is received from an attempt to carry out an optional operation,
such as setting the background highlighting.

Read-Only documents

Read-Only documents present a special problem to Word Services servers. The server
cannot change the text by sending Set Data events.

Client applications should still allow Word Services processing of read-only documents
because some services will not need to change the text. An envelope addresser is an
example of such a service.

27 Apple Event Registry: Standard Suites

Some documents may appear to be read-only because it is impractical to allow the text to
be changed through Apple Events. A terminal emulator might display a document that is
open in a text editor on a mainframe host. Although the document can be edited, such
editors usually require keystroke commands to be typed by the user.

A reasonable way to handle this is to use the Check Word event to display a list of
misspelled words in a separate window. The user may ask for guesses for each word in the
list, and then type the corrections in herself.

The terminal emulator does this by sending each word in the window to the speller in its
own Check Word event. Words that return "False" are kept in a window. If the user
requests guessing for a particular word, then the terminal emulator will send a Check
Word again, this time requesting some guesses, which it then displays.

Related implementation details

This section discusses the importance of range specifiers and methods for checking
multiple blocks of text.

Checking multiple blocks of text

Most documents do not contain all of their text in a single block. Even a simple word
processor document may have headers, footers, and footnotes. Databases and
spreadsheets may have thousands of text blocks. Even with a single text flow, it is
more efficient if the word processor can have it checked as a sequence of paragraphs
rather than a single large text block.

Word Services allows client applications to use two methods of specifying the text that
is to be checked - the "Send Text Specfiers" method of the "Send Table Specifier"
method.

The Send Text Specifiers method is simpler to use. It works well when there are a
small number of separate text blocks, as in a word processor or drawing program. It
does not work well when there are a large number of separate blocks because the
parameter to the Batch Process My Text event will exceed the limit on the size of an
Apple Event.

The Send Table Specifier method is more complicated to use but has no limitations on
the number of text blocks that can be checked with one Batch Process My Text event.

28 Apple Event Registry: Standard Suites

The Word Services SDK includes a word processor that can be set to use either
method. This is for the edification of programmers - the user should not normally see
this. It is also useful for testing servers. Though Writeswell Jr. has just one text block,
it can use either method by choosing a setting in the Programmer Options dialog:

■ Figure 3 Programmer Options from Writeswell Jr.

Any client application may use one or both methods as appropriate. Any server
application must support both methods.

The direct object to the Batch Process My Text Event may be one of two types. The
server identifies the method used from the type of direct object that the client has
sent.

The Send Text Specifiers method uses a typeAEList that contains one or more object
specifiers for the text to be checked. If there is only one text block to be checked,
then the direct object must be a list with one object specifier as an element.

The Send Table Specifier method uses a typeObjectSpecifier for the direct object. This
object specifier refers to a table that is kept in the client application. The elements of
this table are object specifiers to the text that is to be checked.

29 Apple Event Registry: Standard Suites

The main difference between these two methods is that the Send Text Specifiers is an
explicit method, and the Send Table Specifier is implicit. The first case sends the
specifiers directly in the Batch event. The second case informs the server that it must
ask for them one at a time. The object specifiers that are in the table are the same as
might otherwise be used as elements of the list in the Send Text Specifiers method.

One might ask why the table is used at all - why doesn't the server just ask for the first
text block in the frontmost window, then the second, and so on. This is because the
table contains specifiers for the blocks of text that are to be checked. This might not
be all of the text blocks in the document. Also, the actual object specifiers are needed
to construct subranges for the Set Data events when highlighting and replacing.

Client applications do not need to actually maintain an actual table of object specifiers
in memory. There will likely be some list of text blocks that are to be checked. When
an element of the table is requested by the server, the client will create the object
specifier and send it back in the reply.

Once the server has an object specifier for a particular text block, it will use it the
same way no matter what method was used to obtain it.

Range specifiers

The key to supporting the Word Services suite is to support formRange and end-of-
container formAbsolute key forms. Specifying a position relative to the end of the
container allows the text to be changed by several successive Set Data events without
having to recalculate the new offset after every change. You can tell that a
formAbsolutePosition key is relative to the end of the container because it is negative;
-1 is the last object in the container. Figure 4 illustrates the concept of specifying the
offset relative to the end of the container.

30 Apple Event Registry: Standard Suites

■ Figure 4 Ranges with offset relative to the end of the container

This wrd is misspeled.

This word is misspeled.

Before Replacement

After Replacement

Offsets relative to beginning

Offsets relative to end

Offsets relative to beginning - note that
the offsets are now incorrect.

Offsets relative to end

Figure 5 illustrates a text block that is a range within an enclosing text block. The text
block container is a range whose start is relative to the beginning of the container and
whose end is relative to the end of the container.

■ Figure 5 Text block that is a range within an enclosing text block

This first sentence is not included in the
selection.
This second sentence is included.
The third sentence is included.

If the container of a block of text is a range within an
enclosing text block, the beginning of the range should be
specified relative to the beginning of the whole text block and
the end of the range should be specified relative to the end of
the whole text block.

31 Apple Event Registry: Standard Suites

The formRange key form is not clearly described in the Apple Event Manager chapter
of “Inside Macintosh: Interapplication Communication.” The documentation is unclear
about how to resolve formRange specifiers.

Note that to specify a range of characters, you use a formRange object specifier that
consists of two formAbsolutePosition specifiers, which specify a single character at the
beginning and at the end of the range. When an object accessor receives a formRange
key, the selectionData is a descriptor of type ‘rang.’ You can coerce this to
typeAERecord, and then use the AEGetKeyDesc to extract the keyAERangeStart and
the keyAERangeStop object specifiers. If you don’t coerce to typeAERecord, the call to
AEGetKeyDesc fails because it cannot recognize that the ‘rang’ data type is really an
AERecord. You must then call the AEResolve on each of the two specifiers to get the
beginning and end of the range.

Note that this is a recursive call; your object accessors have already been called by
AEResolve. Therefore, all object accessor must be reentrant and must not change any
global variables. Also, object accessors must be conservative in their use of the stack;
placing large amounts of data in local variables may cause the stack to collide with the
heap.

Specifying sub-ranges of text

The word processor sends the object specifier, for one or more whole containers of
text, to the speller. The speller adds descriptors to the original object specifiers to
create new object specifiers, and sends them back to the word processor. The object
specifiers must stay valid if the length of the text within them changes. Keeping object
specifiers valid is not a problem if specifiers are sent for whole cText objects. However,
if the user selects some arbitrary run of text within a document, the word processor
cannot specify the selection by giving the whole range relative to the beginning of the
document. The beginning of the range must therefore be given relative to the
beginning of the document, and the end must be given relative to the end of the
document: spell-check the text starting with the 29th character from the beginning of
the first text field of window 'foo', and ending with the 37th character from the end of
the first text field of window 'foo'.

Note that the object specifier sent by the word processor must be one that the word
processor can itself resolve. The word processor can specify the object in any way it
chooses; it can specify windows by name, location, or any other acceptable ID. The
innards of the object specifier are not inspected by the speller.

32 Apple Event Registry: Standard Suites

Other facilities

This section discusses another facility of the Word Services suite; specifically, how to
spell-check a single word.

Spell-check a single word

Script writers need a simple method to spell-check a single word and possibly get a list
of guesses. This is also useful for applications that have read-only documents, such as
terminal emulators, and for other purposes such as getting a list of synonyms to a
given word.

To spell-check a single word, send the speller a Check Word event, with a typeText
value in its direct object. The reply to this event has typeBoolean in its direct object,
which is TRUE in value if the word is correct. Note that the reply has an error only
when there was an error in handling the Apple event; if the word is misspelled, the
reply has no keyErrorNumber parameter, and has a FALSE value in its direct object.

If the word processor wants to guess at correct spellings, it may use the Guess Word
event. The keyWSGuessCount parameter is a typeInteger value that contains the
maximum number of guesses desired. The speller might not be able to return as many
guesses as are requested. The parameter can be left off entirely. Any guesses are
returned in the keyAEData parameter to the reply as a typeAEList of typeText objects.

The actual behaviors of Check Word and Guess Word are not specified for applications
that are not spelling checkers. A thesaurus, for example, might use Guess Word to
supply synonyms as the "guesses" in response to each event. The behavior is up to
each individual server.

33 Apple Event Registry: Standard Suites

Apple events defined in the Word Services suite

The Apple events defined in the Word Services suite are described in the following
sections. Table 1 lists these Apple events.

Table 1 Apple events defined in the Word Services suite

Apple event name Requested action

Batch Process My Text Apply a word service to one or more blocks of text
Check Word
Guess Word

Spell-check a single word
Get guesses to a misspelled word

Check Word Interactively Check a word during an interactive session
Interactively Process Text Start an interactive spelling session
Query Replace Replace text upon user confirmation

34 Apple Event Registry: Standard Suites

Batch Process My Text—apply a word service to one or more blocks of text

This event specifies one or more blocks of text for a word service. The event does not actually
send the text to the server, but instead sends either a single object specifier for a cText object or
a list of several object specifiers. The keyDirectObject parameter allows the text to be specified
in two ways: either by sending object specifiers for the text explicitly, in which case the direct
object to the batch event is a list (a descriptor of typeAEList) that contains a single element, or
by sending an object specifier for a table, in which case the direct object is a descriptor of
typeObjectSpecifier. After receiving the Batch Process My Text event, the Word Services server
uses the Get Data event to get the text, and the Set Data event to replace the text in the
document window. The server also attempts to use a Set Data event to highlight text in the
client’s window. If this event fails, the server shows the text in its own window.

Event Class kWordServicesClass

Event ID kWSBatchCheckMe

Parameters
keyClientAddress

Description: This identifies the client word processor. If the
keyClientAddress parameter is present, its value is
used as the address of the word processor. This is
meant to allow a third program, such as a scripting
application, to instruct the speller to check some
other application's document.

Descriptor Type: typeTargetID
Required or Optional? Optional

keyDirectObject
Description: This specifies the text to be checked. There are two

ways that the text can be specified.
If the descriptor is of typeAEList, it must be a list of
items of typeObjectSpecifier. Each object specifier is
expected to resolve to an object of class cText in the
client’s own application; the server does not resolve the
object. Instead, it sends the object specifier back to the
client.
If the keyDirectObject parameter is an object specifier,
it is an object specifier to a list of object specifiers that
is maintained by the word processor. Each element in
this list specifies a cText object that is to be spell-
checked.

35 Apple Event Registry: Standard Suites

The spell-checker can use the object specifier as a
container to request the first element of the list by
asking for the typeObjectSpecifiers that are contained
in the list. The first element is always specified using
formAbsolutePosition (give me the first element).
Succeeding elements are specified using
formRelativePosition (give me the next element) or
formAbsolutePosition.

Descriptor Type: typeObjectSpecifier or typeAEList
Required or Optional? Required

keyFacelessMode
Description: This specifies that the client-interface mode is

selected. If the keyFacelessMode parameter is TRUE,
then spell-checking is done in client-interface mode.
The word processor should use a unique transaction
ID for the batch event; this transaction ID is used by
the subsequent Query Replace events. (Do not set the
kAENeverInteract flag in the batch event. The speller
might need to do some interaction, such as prompting
the user to locate a dictionary file.)

Descriptor Type: typeBoolean
Required or Optional? Optional (default value: false)

Reply Parameters
keyErrorNumber

Description: The result code for the event.
Descriptor Type: typeLongInteger
Required or Optional? Optional (The absence of a keyErrorNumber

parameter in the reply indicates that the event was
handled successfully.)

Result Codes
errAEEventFailed –10000 The Apple event handler failed

when attempting to handle the Apple event.
errAEInTransaction –10011 Could not handle this Apple

event because it is not part of the current
transaction.

Notes A client application can choose either of the two options to specify the
text (that is to be checked) in the keyDirectObject parameter. The
options are referred to as the "Send Table Specifier" and "Send Text
Specifiers" methods of specifying text in the above section "Checking
multiple blocks of text".

36 Apple Event Registry: Standard Suites

37 Apple Event Registry: Standard Suites

Check Word—spell-check a single word

This Apple event requests spell-checking for a single word. The action is not specified
if the application that receives this event is not a speller. There are other uses for the
Check Word event, in addition to performing a spell-check. One example is looking up
synonyms in a thesaurus.

Event Class kWordServicesClass

Event ID kWSCheckWord

Parameters
keyDirectObject

Description: This is the text of a single word to be checked.
Descriptor Type: typeIntlText
Required or Optional? Required

keyWSGuessCount
Description: This is the maximum number of guesses that are

desired if the word is incorrect.
Descriptor Type: typeInteger
Required or Optional? Optional (If it is not present, a default value of 0 is

used.)

Reply Parameters
keyAEDirectObject

Description: Is TRUE if the word was correct or FALSE if it was
not.

Descriptor Type: typeBoolean
Required or Optional? Required

keyErrorNumber
Description: The result code for the event.
Descriptor Type: typeLongInteger
Required or Optional? Optional (The absence of a keyErrorNumber

parameter in the reply indicates that the event
was handled successfully.)

38 Apple Event Registry: Standard Suites

Guess Word—Get Guesses for a Misspelled Word

This Apple event requests guessing for a single word. An optional parameter to the
Guess Word event gives the maximum number of guesses to the word that can be
returned as a list in the reply. The action is not specified if the application that
receives this event is not a speller. There are other uses for the Guess Word event, in
addition to performing a spell-check. One example is looking up synonyms in a
thesaurus.

Event Class kWordServicesClass

Event ID kWSGuessWord

Parameters
keyDirectObject

Description: This is the text of a single word to be guessed.
Descriptor Type: typeIntlText
Required or Optional? Required

keyWSGuessCount
Description: This is the maximum number of guesses that are

desired if the word is incorrect.
Descriptor Type: typeInteger
Required or Optional? Optional (If it is not present, a default value of 0 is

used.)

Reply Parameters
keyAEDirectObject

Description: This contains a list of possible replacements for an
incorrect word.

Default Descriptor Type: typeAEList (a list of typeText objects)
Required or Optional? Reguired. . If any guesses were requested but none

were available, the keyAEResult parameter will be an
empty list. Thus, this parameter has the default value
of an empty list. Even though the parameter is
present, it can have fewer guesses than were
requested.

keyErrorNumber
Description: The result code for the event.
Descriptor Type: typeLongInteger
Required or Optional? Optional (The absence of a keyErrorNumber

parameter in the reply indicates that the event was
handled successfully.)

39 Apple Event Registry: Standard Suites

Check Word Interactively—check a word during an interactive session

This Apple event sends words to a server that has already received the Interactively
Process Text event and is prepared to receive words and check them as they arrive.

Event Class kWordServicesClass

Event ID kWSCheckInteractive

Parameters
keyAEData

Description: The actual text of the word that is sent.
Descriptor Type: typeIntlText
Required or Optional? Required

keyDirectObject
Description: A typeObjectSpecifier that specifies the word that is

sent, relative to the beginning of its container. It must
not be sent relative to the end, because the end can
change as the user types.

Descriptor Type: typeObjectSpecifier
Required or Optional? Required

Reply Parameters
keyErrorNumber

Description: The result code for the event.
Descriptor Type: typeLongInteger
Required or Optional? Optional (The absence of a keyErrorNumber

parameter in the reply indicates that the event was
handled successfully.)

keyErrorString
Description: A character string that describes the error, if any, that

occurred when the event was handled.
Descriptor Type: typeIntlText

40 Apple Event Registry: Standard Suites

Required or Optional? Optional

41 Apple Event Registry: Standard Suites

Interactively Process Text—start an interactive spelling session

This Apple event requests the speller to start an interactive text-checking session. No
data is sent in this event; it is used to ensure that the speller is both available and
capable of interactive spell-checking. If a reply is received with no error code, the
speller can start sending words for processing with the Check Word Interactively Apple
event.

Event Class kWordServicesClass

Event ID kWSStartInteractive

Parameters
keyFacelessMode

Description: This parameter specifies that client-interface mode is
used. If the keyFacelessMode parameter is TRUE,
spell-checking is done in client-interface mode. The
word processor should use a unique transaction ID
for the event; this transaction ID is used by the
subsequent Query Replace events. Do not set the
kAENeverInteract flag in the event. The speller might
need to do some interaction, such as to prompt the
user to locate a dictionary file.

Descriptor Type: typeBoolean
Required or Optional? Optional (default value: FALSE)

Reply Parameters
keyErrorNumber

Description: The result code for the event.
Descriptor Type: typeLongInteger
Required or Optional? Optional (The absence of a keyErrorNumber

parameter in the reply indicates that the event was
handled successfully.)

keyErrorString
Description: A character string that describes the error, if any, that

occurred when the event was handled.
Descriptor Type: typeIntlText
Required or Optional? Optional

42 Apple Event Registry: Standard Suites

43 Apple Event Registry: Standard Suites

Query Replace—replace text upon user confirmation

The speller sends this event to inform the word processor that a range of text might
need replacement.

Event Class kWordServicesClass

Event ID kWSQuery Replace

Parameters
keyAEData

Description: This is a list of possible replacements for the
identified text. There can be zero, one, or more items
in the list.

Descriptor Type: typeAEList (of typeIntlText objects)
Required or Optional? Optional (default value: a list of one null string)

keyDirectObject
Description: This is an object specifier for the text that is

questioned by the speller. The word processor should
highlight this text in the document window and scroll
it into view in such a way that it is visible behind any
dialog it might show.

Descriptor Type: typeIntlText
Required or Optional? Required

keyErrorString
Description: This is a human readable string that explains what

sort of error in the text has been found. For example,
“Incorrect spelling,” or “Split infinitive.”

Descriptor Type: typeAEList (of typeIntlText objects)
Required or Optional? Optional (default value: a list of one null string)

44 Apple Event Registry: Standard Suites

keyTransactionIDAttr
Description: This is the transaction ID that was supplied in the Batch

Process My Text or Interactively Process Text event. The
transaction ID is supplied as an argument to the
AECreateAppleEvent system call.

Descriptor Type: typeLongInteger
Required or Optional? Required

Reply Parameters
keyErrorNumber

Description: The result code for the event.
Descriptor Type: typeLongInteger
Required or Optional? Optional (The absence of a keyErrorNumber

parameter in the reply indicates that the event was
handled successfully.)

keyErrorString
Description: A character string that describes the error, if any, that

occurred when the event was handled.
Descriptor Type: typeIntlText
Required or Optional? Optional

45 Apple Event Registry: Standard Suites

Object classes defined in the Word Services suite

The Apple event object classes defined in the Word Services suite are described in the
following sections. Table 2 lists these object classes.

Table 2 Apple event object classes defined in the Word Services suite

Object class ID Description

cApplication A standard Macintosh application
Properties: pBatchMenuString,

pInteractiveMenuString, pLocation,
pMenuIcon,
pColorMenuIcon, pCanDisjointHilite

Element Classes: none
cChar Text characters

Properties: pBackgroundHilite, pBestType, pClass,
pDefaultType

Element Classes: none
cText A series of characters

Properties: pBestType, pClass, pDefaultType,
pLockTransactionID, pBackgroundHilite

46 Apple Event Registry: Standard Suites

Figure 6 illustrates the inheritance hierarchy for the object classes defined in the Word
Services suite. For each object class, a list is provided of the properties, element
classes, and Apple events that have not been inherited from object classes higher in
the inheritance hierarchy.

■ Figure 6 Object inheritance hierarchy for the Word Services suite

cObject

pBestType
pClass
pDefaultType
Count Element
Create Element
Delete
Get Data
Get Data Size
Set Data

cApplication

pBatchMenuString
pInteractiveMenuString
pLocation
pMenuIcon

cText

pLockTransactionID
cBackgroundHilite

cChar

pBackgroundHilite

47 Apple Event Registry: Standard Suites

48 Apple Event Registry: Standard Suites

cApplication—a standard Macintosh application

The cApplication object class is an extension to the existing cApplication object class. Five
properties have been added. The first properties contain text that a word processor can display
in its menu to list the Batch and Interactive services provided by a speller. The third property
provides an alias record to the application so that it can be launched again. The following two
properties allow applications to make different menu items more distinguishable. The sixth
property allows a server to ask a client if it supports disjoint background highlighting. Not all of
the Core suite cApplication properties are listed here, because some of them do not have any
relevance to the Word Services suite.

Some of these properties are possessed by servers so that clients may query them. Others are
possessed by clients for servers to query.

Superclass cApplication (Core suite)

Default Descriptor
Type

typeIntlText

Properties
pBatchMenuString

Description: This property is a text string suitable for display as a menu
item. It describes the service that is performed by the
speller in response to receiving a Batch Process My Text
event. The value of the property is a string such as "Check
Spelling", "Check Grammar", or "Translate to Greek". This
is a property of a server.

Object Class ID: cIntlText
Inherited? No
Modifiable or
Nonmodifiable? Nonmodifiable

pInteractiveMenuString
Description: This property is a text string suitable for display as a menu

item. It describes the service that is performed by the
speller in response to receiving an Interactively Process
My Text event. The value of the property is a string such as
"Check Spelling Interactively", "Check Grammar
Interactively", or "Translate to Greek on the Fly". This is a
property of a server.

Object Class ID: cIntlText
Inherited? No

49 Apple Event Registry: Standard Suites

Modifiable or
Nonmodifiable? Nonmodifiable

pLocation
Description: This property is an alias record that the user can save and

use later to launch the application again. The application
must set the userType field of the alias record to its own
signature. (The userType is set to 0 when the Alias
Manager creates the alias record; the value that can be
stored there is left up to the application, and is not
interpreted by the Alias Manager). Storing the signature in
this field allows the application to receive Apple events by
creator code without having to manually resolve the Alias
Manager record, and then call GetFileInfo to get the
application file’s Finder information. It also allows client
applications to use the Process Manager to see if the
server is already running. This is a property of a server.

Object Class ID: typeAlias
Inherited? No
Modifiable or
Nonmodifiable? Nonmodifiable

pMenuIcon
Description: The value of this property is a small icon that is placed in

the menu along with the interactive or batch menu strings.
It is identical to the small icon that the speller shows in the
Finder. Word processors that take advantage of this use it
to make the different menu items more distinguishable.
This property can be useful in cases in which a user has
two different spellers. This is a property of a server.

Object Class ID: typeSmallIcon
Inherited? No
Modifiable or
Nonmodifiable? Nonmodifiable

pColorMenuIcon
Description: The value of this property is a small color icon that is

placed in the menu along with the interactive or batch
menu strings. It can be displayed with the same code the
displays the monochrome small icon. The Menu Manager
will use the color version if it is present when the menu is
displayed on a color monitor. This is a property of a server.

Object Class ID: typeColorIcon

50 Apple Event Registry: Standard Suites

Inherited? No
Modifiable or
Nonmodifiable? Nonmodifiable

pCanDisjointHilite
Description: The value of this property is a true if the application is a

Word Services client that can highlight more than one
separate range of text. This is useful to some servers such
as grammar checkers that may wish to point out (for
example) that two verbs in a paragraph disagree in tense.
This is a property of a client.

Object Class ID: typeBoolean
Inherited? No
Modifiable or
Nonmodifiable? Nonmodifiable

Element Classes None

Apple Events
Apple events from the Core suite:
Get Data Inherited from cObject
Get Data Size Inherited from cObject

51 Apple Event Registry: Standard Suites

52 Apple Event Registry: Standard Suites

cChar—text characters

The cChar object class has a property that highlights a range of characters even when they are
in a window that is in the background. The cChar object class is an extension of the cChar
object class defined in the Core suite.

Superclass cText (Core suite)

Default Descriptor
Type

typeIntlText

Properties
pBackgroundHilite

Description: Indicates whether the character is to remain highlighted
while the containing window is in the background. If
pBackgroundHilite is TRUE, the character stays
highlighted while a window is in the background.
Setting this property to TRUE also implies that the
character is scrolled into view within its window.

Object Class ID: typeBoolean
Inherited? No
Modifiable or
Nonmodifiable? Modifiable

Element Classes None

Apple Events
Apple events from the Core suite:
Get Data Inherited from cObject
Set Data Inherited from cObject

Notes The pBackgroundHilite allows a Word Services server to highlight a
suspected word in the original document with all its font, style, and
other attributes, rather than showing the text in its own window.
Ordinarily, this property is implemented by setting a text selection, with
a special case that leaves the highlighting of the selection on when the
window is moved to the background. It is not necessary for an
application developer to change the user selection to show the
highlighting (the highlighting is for display purposes only). Instead, the
user selection can be preserved and implemented in a different way.

53 Apple Event Registry: Standard Suites

Support for this property is optional. If a word processor does not
support this property, it should return an error code when the speller
tries to set it. The speller must then display the text in its own window.
Support for more than one range of highlighted text is also optional. If
the word processor cannot show disjointed selections, it should turn off
any existing highlighting when the property is set to TRUE on a new
range of text.

The server can determine whether disjoint ranges are supported by
trying to set the property for two ranges and then using the Get Data
event to obtain the value of the property for each range. If disjointed
ranges are not supported, the value of the property is FALSE for the first
range that was set. The server must set the property to FALSE when it
has finished examining a particular range of characters.

Note that you set this element by using a Set Data event, where the data
to be set has a Boolean value. The direct object is a formRange specifier
that specifies a range of characters within the cText object to be
highlighted.

There are additional properties and Apple events defined in the Core
suite that can be used by an application that supports the Word Services
suite. Only the essential properties and Apple events required by an
application to support the Word Services suite are listed here.

54 Apple Event Registry: Standard Suites

cText—a series of characters

This is an extension of cText object class, as defined in the Core suite. A text locking property
has been added, which allows a transaction to have exclusive access rights to an object.

Superclass cObject (Core suite)

Default Descriptor
Type

typeIntlText

Properties
pBestType

Description: The descriptor type that contains the most information
from objects of this object class.

Object Class ID: cType
Inherited? Yes, from cObject
Modifiable or
Nonmodifiable? Nonmodifiable

pClass
Description: The four-character class ID for the object class.
Object Class ID: cType
Inherited? Yes, from cObject
Modifiable or
Nonmodifiable? Nonmodifiable

pDefaultType
Description: The default descriptor type for the object class.
Object Class ID: cType
Inherited? Yes, from cObject
Modifiable or
Nonmodifiable? Nonmodifiable

pLockTransactionID
Description: The pLockTransactionID property holds the transaction ID

for a transaction that has exclusive access to the object. If
an event with a different ID attempts to read, write, or
modify the object, the word processor should return
errAEInTransaction as a

55 Apple Event Registry: Standard Suites

result. If there is no lock owner, the property has the value kAnyTransactionID.
Object Class ID: typeLongInteger
Inherited? No
Modifiable or
Nonmodifiable? Modifiable

Apple Events
Apple events from the Core suite:
Get Data Inherited from cObject
Set Data Inherited from cObject

Notes There are additional properties and Apple events defined in the Core
suite that can be used by an application that supports the Word Services
suite. Only the essential properties and Apple events required by an
application to support the Word Services suite are listed here.

56 Apple Event Registry: Standard Suites

Primitive object classes defined in the Word Services suite

Table 3 lists the primitive Apple event object classes (classes with no properties and
only one element) defined in the Word Services suite.

Table 3 Primitive object classes defined in the Word Services suite

Object class ID Descriptor type of element
Description

(There are no primitive object classes currently defined in the Word Services Suite)

57 Apple Event Registry: Standard Suites

58 Apple Event Registry: Standard Suites

Key forms defined in the Word Services suite

Table 4 lists the key forms defined in the Word Services suite. The italicized words in
each example correspond to the key (the portion of the object specifier record that
distinguishes an object from other objects of the same class in the same container).
For more information about keys and key forms, see the Apple Event Manager chapter
of “Inside Macintosh: Interapplication Communication.”

Table 4 Key forms defined in the Word Services suite

Key form constant Description

formAbsolutePosition Specifies the position of an element in relation to the beginning or
end of its container (for example, “word 5 of . . . ”), or specifies one
or more elements with a constant defined in the Apple Event
Manager chapter of “Inside Macintosh: Interapplication
Communication,” such as kAEFirst (for example, “the first word in
paragraph 12 . . . ”) or kAEAll (for example, “all the words in
paragraph 12 . . . ”). Note that the end-of-container position is
required.

formName Specifies an element by its name (for example, “the document
named ‘MyDoc’ ”).

formPropertyID Specifies a property of an object by its four-character
property ID (for example, “the font of word 1”).

formRange Specifies a list of elements between two other elements (for
example, “the words between ‘Wild’ and ‘Zanzibar,’
inclusive”).

formRelativePosition Specifies an element immediately before or after a container
(for example, “the next word after the words whose style is
bold”).

formTest Specifies one or more elements that pass a test; values of one
or more properties or elements are tested (for example, “the
first paragraph that is centered and that begins with the word
‘Wild’ ”).

59 Apple Event Registry: Standard Suites

Constants defined in the Word Services suite

Table 5 lists the constants defined in the Word Services suite.

Table 5 Constants defined in the Word Services suite

Constant Value

keyClientAddress 'Cadr'
keyWSGuessCount 'Gcnt'
kWordServicesClass 'WSrv'
kWSBatchCheckMe 'Btch'
kWSCheckInteractive 'CkIn'
kWSCheckWord 'CkWd'
kWSGuessWord 'Gess'
kWSQueryReplace 'QRep'
kWSStartInteractive 'SInt'
pBackgroundHilite 'pBgH'
pBatchMenuString 'pBMs'
pInteractiveMenuString 'pIMs'
pLocation 'pALc'
pLockTransactionID 'pLID'
pCanDisjointHilite 'pDjH'

60 Apple Event Registry: Standard Suites

Index

keyErrorString 32
Reply Parameters 26
Apple events

defined in the Word Services suite 24-28, 30, 31, 33
Batch Process My Text 24, 25
Constants defined in the Word Services suite 45
cApplication 36
cBackgroundHilite 41
cBackgroundHilite object class 43
cBackgroundHilite objects 18
cChar—text characters 38
Check Word 24
Check Word Interactively 10, 15, 24
cObject 40
constants

defined in the Word Services suite 45
Create Element 5
cText 38, 40
Database suite

key forms defined in 44
Delete 5
errAEEventFailed 26
errAEInTransaction 26
formAbsolutePosition 5
formAbsolutePosition key form 44
formName key form 44
formPropertyID 5
formPropertyID key form 44
formRange key form 44
formRelativePosition key form 44
formTest key form 44
Get Data 5
Get Data Size 5, 12, 13
Interactively Process Text 24
kAEAnyTransaction 12
kAEAnyTransaction 13
key forms

defined in the Database suite 44
definitions of 44

keyAEData 14, 15, 30, 32
keyAEDirectObject 14, 15, 28
keyClientAddress 25, 45
keyDirectObject 28
keyErrorNumber 26, 30, 31, 33

61 Apple Event Registry: Standard Suites

keyErrorString 30, 31, 33
keyFacelessMode 26, 31
keyTransactionIDAttr 33
keyWSGuessCount 28, 45
kWordServicesClass 30, 31, 32, 45
kWSBatchCheckMe 45
kWSCheckInteractive 30, 45
kWSCheckWord 45
kWSQuery Replace 32
kWSQueryReplace 45
kWSStartInteractive 31, 45

formRange 5
pInteractiveMenuString 6

object classes
defined in the Word Services suite 34-36, 38, 40

object inheritance hierarchy
for Word Services suite 34

object specifiers
key forms for 44

pBackgroundHilite 38, 45
pBatchMenuString 6, 36, 45
pBestType 40
pClass 40
pDefaultType 40
pInteractiveMenuString 36, 45
pLocation 37, 45
pLockTransactionID 6, 12, 13, 40, 45
pMenuIcon 37
primitive object classes

defined in the Word Services suite 43
Query Replace—replace text upon user confirmation 32
Set Data 5, 12, 18
typeIntlText 38, 40
typeObjectSpecifier 30
Word Services suite 1

Apple events defined in 24-28, 30, 31, 33
constants defined in 45
object classes defined in 34-36, 38, 40
object inheritance h 34
primitive object classes defined in 43

62 Apple Event Registry: Standard Suites

